Don't panic: The inverse reading of most conditionals

Sven Lauer and Prerna Nadathur
17th Annual Semantics Fest
Stanford University
March 11, 2016

Quantified Indicative Conditionals (QICs): Sentences whose subject is a nominal quantifier and which are modified by an if-clause.
(1) a. Every student passed if he studied hard.
b. No student failed if he studied hard.

As of yet, no consensus about a compositional analysis (or whether one is feasible).
"The embarrassment had been known for a long time, but nobody dared talk about it. Then Higginbotham (1986) dragged it into the open."
(Kratzer in press)

1 "Reversed" readings

Kratzer (in press) observes that certain QICs have an unexpected reading:
(2) Most kids asked for calculators if they had to do long divisions.
a. Vanilla reading:

The majority of kids who had to do long divisions asked for calculators.
\#(calculator users \cap long-divisioners) $>\frac{1}{2} \#$ (long-divisioners)
b. Reversed reading:

The majority of kids who asked for calculators were ones that had to do long divisions.
\#(long-divisioners \cap calulator users) $>\frac{1}{2} \#$ (calculator users)

- On the vanilla reading, the if-clause appears to enter into the restriction of most, while the matrix clause provides its nuclear scope.
- On the reversed reading, it appears as if the matrix clause enters the restriction, while the if-clause provides the nuclear scope!

The reversed reading requires some contextual support (backgrounding of the consequent, and focus in the if-clause):
(3) You: Did you see kids using calculators when you volunteered in your son's school yesterday? What did they use the calculators for?

Me: Most kids asked for calculators if they had to do LONG DIVISIONS. But I am pleased to report that most kids in my son's school do long divisions by hand.

The problem: How do we derive this interpretation compositionally?

- Arguably, past-tense QICs do not involve a modal quantifier (will, must, may, might); how is the if-clause to be interpreted (cf. Kratzer 1986)?
- The simplest solution (cf. Leslie 2009) is to interpret if as restricting most.
- But, in combination with a standard generalized-determiner meaning for most (4), this only predicts the vanilla interpretation (5)
(4) $\operatorname{MOST}[A][B]:=|A \cap B|>|A-B|$
(5) $\quad \mid$ kids \cap long division \cap calculators $|>|$ kids \cap long division - calculators \mid

Kratzer uses the reversed reading to support a startling conclusion about QICs: their perceived interpretation does not arise compositionally!

2 Kratzer's analysis

2.1 Good intentions...

- Kratzer starts by ruling out the possibility of interpreting QIC if-clauses as entering the quantifier restriction (based on arguments from von Fintel and Iatridou 2002, Leslie 2009, see appendix)
- Instead, QICs embed a (full, binary) conditional operator \triangleright under the quantifier.
(6) $\quad(1 \mathrm{~b}) \equiv N o_{x}[\operatorname{student}(x)][\operatorname{studied}-\operatorname{hard}(x) \triangleright \operatorname{failed}(x)]$
- Kratzer argues that \triangleright should support the following inferences:
(7) Modus ponens
$\phi \triangleright \psi$ and ϕ jointly entail ψ
(8) Contraposition
$\phi \triangleright \psi$ entails $\neg \psi \triangleright \neg \phi$
(9) Conditional excluded middle

For all ϕ, ψ : either $\phi \triangleright \psi$ or $\phi \triangleright \neg \psi$
(10) Weak Boethius' Thesis
$\phi \triangleright \neg \psi$ entails $\neg(\phi \triangleright \psi)$

The result is Pizzi and Williamson's (2005) "bombshell": Given a bivalent background logic, every connective \triangleright that satisfies all four is equivalent to the material biconditional!

2.2 Domain restriction ex machina

Desperate times call for desperate measures...

- (Past-tense) QICs embed a material conditional under the nominal quantifier.

$$
N o_{x}[\operatorname{student}(x)][\text { studied-hard }(x) \supset \operatorname{failed}(x)]
$$

- Nominal quantifier domains are restricted pragmatically, via domain variables (von Fintel 1994, Stanley and Szabó 2000).
- When the pragmatic restriction just so happens to associate with the antecedent of the embedded conditional, we get:

$$
N o_{x}[\operatorname{student}(x) \wedge \operatorname{studied}-\operatorname{hard}(x)][\operatorname{studied}-h a r d(x) \supset \text { failed }(x)]
$$

- This makes the antecedent redundant in the embedded conditional, so is equivalent to:

$$
N o_{x}[\operatorname{student}(x) \wedge \operatorname{studied}-\operatorname{hard}(x)][\operatorname{failed}(x)]
$$

2.3 Reversing

The "reversed" reading enters the picture at this point:

- If the pragmatic domain restriction happens as above (i.e., with the content of the antecedent of the embedded conditional, we obtain the vanilla reading of (2) (assuming the denotation for most in (4) above).

$$
\operatorname{Most}_{x}[\operatorname{kid}(x) \wedge \text { long-divisions }(x)][\text { long-divisions }(x) \supset \text { calculator }(x)]
$$

- Since the domain variable picks up its associate pragmatically, there should be additional possibilities; Kratzer suggests that this produces the "reversed" reading.
- If the domain variable picks up the conditional consequent, we get:

$$
\operatorname{Most}_{x}[\operatorname{kid}(x) \wedge \operatorname{calculators}(x)][\operatorname{long}-d i v i s i o n(x) \supset \operatorname{calculator}(x)]
$$

- This doesn't quite get us to $(2 b),{ }^{1}$ so Kratzer has to additionally postulate an embedded application of conditional perfection (Geis and Zwicky 1971) to get a biconditional from the material conditional:

$$
\begin{gathered}
\operatorname{Most}_{x}[\operatorname{kid}(x) \wedge \text { calculators }(x)][\operatorname{long}-d i v i s i o n(x) \equiv \text { calculator }(x)] \\
\operatorname{Most}_{x}[\operatorname{kid}(x) \wedge \text { calculators }(x)][\operatorname{long}-\text { division }(x)]
\end{gathered}
$$

- (Embedded perfection does not change the result in the previous cases.)

[^0]
2.4 The end of the road?

Besides sacrificing compositionality, Kratzer's analysis ...

- ... postulates embedded conditional perfection.
- But: Conditional perfection is generally considered a pragmatic inference.
- And: In general, conditional perfection yields something weaker than a biconditional (von Fintel 2001)
- So, instead of relying on a well-known inference, this instance of perfection would need to be derived by new means (embedded $E X H$?).
- ... predicts 'reversed' readings for all quantifiers (not just most).
- But we do not seem to find such readings.

3 Inverse-proportional readings of many

3.1 An observation

The quantifiers many and few are known to have an "inverse proportional" reading that resembles the reversed conditional:
(11) Many Scandinavians have won the Nobel Prize in literature.
a. Cardinal: The number of Scandinavians NP-lit winners is large
b. Standard proportional: The ratio of Scandinavian NP-lit winners to Scandinavians is high
c. Inverse proportional: The ratio of Scandinavian NP-lit winners to NP-lit winners is high (Westerståhl 1985)

Romero (2015), building on Cohen (2001), paraphrases the inverse-proportional reading as in (12); it only surfaces when the quantifier-restriction is focused:
(12) Many Scandinavians ${ }_{f o c}$ have won the Nobel Prize in literature.
\leadsto The ratio of Scandinavian NP-lit winners to Scandinavians is high compared to the ratio of NP-lit winners from other world regions to the population of those regions.

This many needs the following truth conditions:
(13) Many Ps are Q :
$|P \cap Q|:|P|>\theta(|\operatorname{ALT}(P) \cap Q|:|\operatorname{ALT}(P)|)$
where θ determines a high standard by substituting P 's alternatives
But, (13) is non-conservative ... which is a problem (cf. Barwise and Cooper 1981, Keenan and Stavi 1986, on natural-language quantifiers).

3.2 Restoring conservativity (making many great again)

Romero's proposal: (building on Hackl 2009, Schwarz 2010) natural-language many is the composition of a parametrized conservative determiner MANY (ambiguous between 14a and 14 b) with the morpheme POS associated with bare gradable adjectives. ${ }^{2},{ }^{3}$
(14) a. MANY ${ }_{\text {card }}:=\lambda d_{n} \lambda P_{e t} \lambda Q_{e t} \cdot \exists x: P(x)[Q(x) \&|x| \geq d]$, where n is the degree-type
b. MANY ${ }_{\text {prop }}:=\lambda d_{n} \lambda P_{e t} \lambda Q_{e t} .(|P \cap Q|:|P|) \geq d$
c. $\operatorname{POS}=\lambda \mathbf{C}_{d t, t} \lambda P_{d t} \cdot \exists d[P(d) \wedge d>\theta(\mathbf{C})]$, where \mathbf{C} is a comparison class

Standardly, pos uses focus structure to determine the comparison class \mathbf{C} against which the standard θ is generated: this comparison class is the set of sentence-level alternatives determined by substituting the focused element for its (relevant) alternatives.

The inverse proportional reading (5) arises when many $=$ MANY $_{\text {prop }}+$ POS co-occurs with a focus associate in the quantifier restriction, and POS scopes sententially:
(15) Many Scandinavians $f_{f o c}$ have won the NP in literature.
a. LF: $\left[[\operatorname{POS} C]\left[1\left[t_{1}\right.\right.\right.$-MANY $_{\text {prop }}$ Scandinavians ${ }_{f o c}$ have won NP-lit $\left.\left.]\right] \sim C\right]$
b. Alternatives: \{ratio of Scandinavian NP-lit winners to Scandinavians, ratio of East-Asian NP-lit winners to East Asians, ratio of Balkan NP-lit winners to Balkans, ...\}
c. $(15 \mathrm{a}) \equiv$ the ratio of Scandinavian NP-lit winners to Scandinavians $>\theta$ (the ratio of E-Asian NP-lit winners to E-Asians, the ratio of Balkan NP-lit winners to Balkans, ...)
d. \sim The ratio of Scandinavian NP-lit winners to Scandinavians is high compared to the ratio of NP-lit winners from other world regions to the population of those regions.

4 Our proposal

The decompositional analysis of many is independently motivated by Hackl's (2009) proposal that most is the composition of many with the focus-sensitive superlative morpheme -est (which scopes independently of its host; Heim 1999): ${ }^{4}$

[^1]a. MOST $=$ MANY + -est
b. \llbracket-est $\rrbracket=\lambda \mathbf{C}_{d t, t} \lambda P_{d t} . \exists d[P(d) \& \forall C \in \mathbf{C}[C \neq P \rightarrow \neg Q(d)]]$ where \mathbf{C} is a comparison class

- This predicts the existence of "inverse" readings for most-statements if they involve focus associates within the quantifier restriction.
- Kratzer's "reversed" (2b) is exactly this case ... if we assume that if-clauses directly restrict the domain of a nominal quantifier.

4.1 The derivation

- We represent most as MOST $=$ MANY $_{\text {card }}+$-est 5
- MANY ${ }_{\text {card }}$ is concerned with measuring the number of elements that satisfy both property (P and Q) arguments.
(14a) \llbracket MANY $_{\text {card }} \rrbracket=\lambda d_{n} \lambda P_{e t} \lambda Q_{e t} \cdot \exists x: P(x)[Q(x) \&|x| \geq d]$
- -est checks that its argument set has larger cardinality than any alternative's argument set.

$$
\begin{equation*}
\llbracket \text {-est } \rrbracket=\lambda \mathbf{C}_{d t, t} \lambda P_{d t} \cdot \exists d[P(d) \& \forall C \in \mathbf{C}[C \neq P \rightarrow \neg Q(d)]] \tag{16b}
\end{equation*}
$$

- As in (15), the focus-sensitive morpheme takes sentential scope: the comparison class alternatives are MANY card $^{-s t a t e m e n t s ~ w h i c h ~ s u b s t i t u t e ~ f o r ~ l o n g ~ d i v i s i o n s ~}$
- if signals that its complement should be interpreted as the restriction of the determiner (in this case MANY)
(17) Most students asked for calculators top $^{\text {if they had to do long divisions }}$ foc .
a. LF: $\left[[\right.$-est $C]\left[1\left[t_{1}\right.\right.$-MANY card kids [asked-for-calcs if they had long-div $\left.\left.\left._{F}\right]\right] \sim C\right]$
b. Alternatives: $\llbracket \mathbb{C} \rrbracket \subseteq\left\{\lambda d^{\prime} . d^{\prime}\right.$-many kids asked for calcs if they had long-div, $\lambda d^{\prime} . d^{\prime}$-many kids asked for calcs if they had multiplications, $\lambda d^{\prime} \cdot d^{\prime}$-many kids asked for calcs if they had decimals, $\left.\ldots\right\}$
c. $\quad(17 \mathrm{a}) \equiv \exists d[\exists x:(\operatorname{kid}(x) \&$ long-div $(x))[\operatorname{calc}(x) \&|x| \geq d] \&$
$\forall C \in \llbracket \mathbb{C} \rrbracket\left[C \neq \lambda d^{\prime} . \exists x:(\operatorname{kid}(x) \&\right.$ long-div $(x))$

$$
\left.\left.\left[\operatorname{calc}(x) \&|x| \geq d^{\prime}\right] \rightarrow \neg C(d)\right]\right]
$$

d. \sim the number of calculator-using long-div kids $>$ the number of calculator-using kids doing other problem types

[^2]
4.2 Consequences, questions, etc.

- The interpretation we come to in (17d) differs from the paraphrase in (2b):
- Kratzer (seems to) suggest that the right interpretation is that more than half of the calculator-users were kids doing long-division
- We derive a reading that might be paraphrased with the most instead of the majority - specifically, that grouping the calculator-users by problem type gives us the single largest group as kids who had to do long divisions
- Is this the right interpretation? (We think so ...)
- The inverse reading is dependent on focus structure and the inclusion of a focussensitive component in the surface-level determiner:
- this predicts that inverse conditional readings should be possible for determiners like many, few, least/the least, but NOT for every and no
- Ultimately, we are proposing that the restrictor-model for if be extended to allow if to restrict nominal quantifiers.
- If this is right, it might help to solve the QIC "embarrassment" (Higginbotham 1986, Kratzer 2013):

4.3 If-clauses vs regular restrictions

So far so good, but ...

- Problem: Since we take the if-clause to restrict the quantifier, we prima facie predict that the same set of readings should arise if the quantifier is instead restricted by a relative clause, as in (18)
(18) Most kids who had to do long divisions asked for calculators. (\#I am pleased to report that most kids in my son's class do long divisions by hand.)
- But (18) only seems to have the vanilla reading.
- Relatedly, most does not give rise to the 'inverse-proportional' reading in sentences without if-clauses:
(19) Most Scandinavians foc have won the NP in literature.
\nsim The number of Scandinavian NP-lit winners $>$ the number of NP-lit winners from any other world region
- Independent generalization drawn by Pancheva and Tomaszewicz (2012): In English, the focus associate of -est cannot be within the DP where -est originates.
- In our cases, that would be the DP headed by most.
- This would rule out the 'reversed' reading for the relative clause version in (18) and for (19).
- For QICs with most, we would have to maintain that the if-clause, even though it restricts the quantifier, is not 'part of the DP' in the relevant sense.
- This seems plausible.
- However: Pancheva and Tomaszewicz (2012)'s generalization is really about superlatives in definite DPs (John owns the most/best albums by U2).
- And their analysis makes the presence of the responsible for the constraint.
- So is this the same constraint?

A Some arguments against a restrictor view

- Various arguments have been given against the view that if-clauses restrict nominal quantifiers.
- All of them involve perceived contrasts between a QIC and the corresponding sentence with a relative clause.
- These examples are a bit of a mixed bag: In every case, there is something else going on.
- What these examples show is that if-clauses are not (extraposed) relative clauses.
- But we don't think they clearly show that if-clauses do not restrict quantifier domains.

A. 1 Possible vs. actual witnesses

Leslie (2009) asks us to consider a student named Meadow.

- Meadow's father has bribed the teacher. Whatever she does, she will pass. But Meadow knows nothing about this, and she is a very conscientious student: She does not goof off. That is, Meadow is a non-goofer, and she will pass; but even if she goofed off, she would pass.

Intuitively, Meadow is a counterexample to 20a and 20b.
(20) a. Every student will fail if they goof off.
b. No student will pass if they goof off.

But Meadow is not a counterexample to 21a and 21b.
(21) a. Every student who goofs off will fail.
b. No student who goofs off will pass.

- This suggests that while the relative-clause versions in (21) only care about who actually goofs off, the QICs in (20) also are sensitive to what would happen if non-actual goofings took place.
- But: This contrast goes away if we put the sentences in the past tense:
(22) a. Every student failed if they goofed off.
b. No student passed if they goofed off.
a. Every student who goofed off failed.
b. No student who goofed off passed.

This suggests that what makes us take into account non-actual goofers in QICs is the fact that it is not settled, at the time of evaluation, who will goof off.

- Meadow will not actually goof off, but she could. When we talk about the past, we know that she did not
- Note: Simply assuming that the (20) examples involve a will-conditional under the quantifiers gives very weak truth-conditions to 20 b .
- 20b would be true if there is no goofer who is guaranteed to pass.
- We get something closer to intuition if we assume that (modal) will takes scope over a restricted nominal quantifer (à la Leslie 2009).
$-\forall w: N o_{x}(\operatorname{goof}-\mathrm{off}(x, w))(\operatorname{pass}(x, w))$
- Why does will have to take wide scope in (20), but not in (21)?

A. 2 Iffiness

von Fintel and Iatridou (2002) point out the following contrast:
a. Every coin that is in my pocket is silver.
b. Every coin is silver if it is in my pocket.

- (24b) seems to suggest a non-accidental connection between being in the speakers pocket and being silver.
- (24a) does not.
- A Leslie-style analysis that involves a wide-scope quantfier over worlds for (24b) but not (24a) would go some way to make sense of this contrast.
- But note that in this case, the contrast does not go away in the past tense:
(25) a. Every coin that was in my pocket was silver.
b. Every coin was silver if it was in my pocket.

A. 3 Partitives

Also from von Fintel and Iatridou (2002):
(26) Nine of the students will succeed if they work hard.
(27) Nine of the students who work hard will succeed.

- (27) implies/presupposes that there are more than nine students who work hard (but only nine will succeed).
- (26) has no such implication.
- Clearly, this implication is due to the presence of the partitive. (29) does not have the implication, either.
(28) Nine students will succeed if they work hard.
(29) Nine students who work hard will succeed.
- Does not show that if-clauses do not restrict nominal quantifiers, but only that the presupposition of the partitive is only sensitive to material in its complement.

References

Barwise, J. and Cooper, R.: 1981, Generalized quantifiers and natural language, Linguistics and Philosophy 5, 159-219.

Beaver, D. and Clark, B.: 2008, Sense and Sensitivity: How Focus Determines Meaning, Blackwell, Oxford.

Cohen, A.: 2001, Relative readings of many, often and generics, Natural Language Semantics 69, 41-67.

Geis, M. and Zwicky, A.: 1971, On invited inferences, Linguistic Inquiry 2, 561-566.
Hackl, M.: 2009, On the grammar and processing of proportional quantifiers: Most versus more than half, Natural Language Semantics 17, 63-98.

Heim, I.: 1999, Notes on superlatives. MIT.
Higginbotham, J.: 1986, Linguistic theory and davidson's program in semantics, in E. Lepore (ed.), Truth and Interpretation: Perspectives on the Philosophy of Donald Davidson, Basil Blackwell, Oxford, pp. 29-48.

Keenan, E. L. and Stavi, J.: 1986, A semantic characterization of natural language determiners, Linguistics and Philosophy 9, 253-326.

Kratzer, A.: 1986, Conditionals, Proceedings of Chicago Linguistic Society, Vol. 22, pp. 1-15.
Kratzer, A.: in press, Chasing Hook: Quantified indicative conditionals, in L. Walters and J. Hawthorne (eds), Conditionals, Probability, and Paradox: Themes from the Philosophy of Dorothy Edgington.

Leslie, S.-J.: 2009, "if", "unless", and quantification, in R. J. Stainton and C. Viger (eds), Compositionality, Context and Semantic Values: Essays n Honor of Ernie Lepore, Springer, pp. 3-30.

Pancheva, R. and Tomaszewicz, B.: 2012, Cross-linguistic differences in superlative movement out of nominal phrases, Proceedings of WCCFL 30.

Penka, D.: ms., Unifying many: A unified analysis of the many readings of many. Ms., University of Konstanz.

Pizzi, C. and Williamson, T.: 2005, Conditional excluded middle in systems of consequential implication, Journal of Philosophical Logic 34, 333-362.

Romero, M.: 2015, The conservativity of many, Proceedings of the Twentieth Amsterdam Colloqium.

Schwarz, B.: 2010, A note on for-phrases and derived scales. Handout for talk at Sinn und Bedeutung 15.

Stanley, J. and Szabó, Z. G.: 2000, On quantifier domain restriction, Mind \mathfrak{F} Language 15(2), 219-261.
von Fintel, K.: 1994, Restrictions on quantifier domains, PhD thesis, Massachussetts Institute of Technology, Cambridge, MA.
von Fintel, K.: 2001, Conditional strengthening: A case study in implicature. Manuscript, Massachusetts Institute of Technology.
von Fintel, K. and Iatridou, S.: 2002, If and when 'if' clauses can restrict quantifiers. manuscript, Massachusetts Institute of Technology.

[^0]: ${ }^{1}$ In particular, these truth conditions are satisfied (assuming (4)) in the following scenario, contrary to intuition: The class contains twenty childen, 18 of which asked for calculators. Of those, 16 had to do logarithms, and 2 had to do long division. This means that the number of children satisfying $\operatorname{kid}(x) \wedge$ calculators $(x) \wedge[\operatorname{long}-d i v i s i o n(x) \supset$ calculator $(x)]$ is 18 , while the number of children satisfying $\operatorname{kid}(x) \wedge$ calculators $(x) \wedge \neg[$ long-division $(x) \supset$ calculator $(x)]$ is 0 .

[^1]: ${ }^{2}$ Penka (ms.) argues that MANY prop can be dispensed with, with the three observed readings-cardinal, proportional and inverse-proportional - arising on the basis of MANY card, in interaction with Pos and focus interpretation.
 ${ }^{3}$ Hackl (2009) takes MANY to uniformly be a gradable modifier with meaning $\lambda P . \lambda d . \lambda x .[P(x) \&|x| \geq d]$, assuming its quantificational force on apparently-quantificational uses is provided by a silent existential quantifier. Romero instead analyzes Many as a 'parametrized quantifier', as in 14 . We follow her in this regard for most below.
 ${ }^{4}$ Like Romero (2015) (for POS), we set aside the question whether -est is conventionally or nonconventionally focus-sensitive (Beaver and Clark 2008), letting -est take a comparison class argument that is partially-determined by focus interpretation.

[^2]: ${ }^{5}$ Following Hackl (2009), but as Romero (2015), we assume MANY ${ }_{\text {card }}$ has a quantificational-determiner meaning with an extra (degree) argument. Hackl instead takes Many to be a gradable NP-modifier.

