Catalyzing causation: Hindrance and sufficiency in causative *get*

Prerna Nadathur Department of Linguistics The Ohio State University

Chicago Linguistic Society 60

April 26, 2024

P. Nadathur

The basic puzzle: too many causatives?

Languages use a range of periphrastic causatives:

- (1) a. Nur **caused** the children to dance.
 - b. Nur made the children dance.
 - c. Nur had the children dance.
 - d. Nur **got** the children to dance.
- (1a)-(1d) all describe *causal situations*: some event involving Nur **brought about** the dancing
- But they are **not interchangeable**:
 - (1) a. caused \sim Nur was indirectly involved
 - b. made \sim Nur used force/coercion
 - c. $had \sim \mbox{Nur}$ was in a position of authority
 - d. $\textbf{got} \sim \text{Nur}$ used trickery/bribery/manipulation

The basic puzzle: too many causatives?

Languages use a range of periphrastic causatives:

- (1) a. Nur **caused** the children to dance.
 - b. Nur made the children dance.
 - c. Nur had the children dance.
 - d. Nur got the children to dance.

The classical hypothesis:

- causative verbs share a common CAUSE (~ cause) core (Dowty 1979)
- different periphrastic verbs add distinct non-causal entailments

Example: make = CAUSE + coercive implication

(2) X make Y do
$$Z := X$$
 cause Y to Z
+ Y did not want to do Z

P. Nadathur

[indirectness] [coercion] [authority] [manipulation] Introduction

Causal reasoning and causal language

Problems with the classical hypothesis:

- pinning down universal 'supplementary' entailments has proven tricky for instance: make is acceptable when the causee is non-volitional or wants the relevant outcome
- binary cause-effect relations do not reflect 'practical' conceptions of causation

An alternative: causal models (complex networks of causal relations)

- causal language describes structures in these (language-independent) representations
- discourse contributions interact (in familiar ways) with such representations
- different model relationships correspond to different linguistic effects (Nadathur & Lauer 2020, Baglini & Bar-Asher Siegal 2021, a.o.)

Today: towards a unified analysis of causative *get* constructions

1 Introduction

- **2** Get-constructions: some background
- **3** Get as an indirect sufficiency causative
- **4** Explaining the relation between hindrance and (in)directness
- **5** Conclusions and outlook

Introduction

- **2** *Get*-constructions: some background
- 3 Get as an indirect sufficiency causative
- **④** Explaining the relation between hindrance and (in)directness
- **5** Conclusions and outlook

A forest of *get*-constructions

Get is syntactically and semantically promiscuous (McIntyre 2005, 2012, a.o.):

(3)	a.	Nur got a book.	[standard]
	b.	Nur got fired.	[passive]
	c.	Nur got her car stolen.	[experiencer]
	d.	Nur got to go to the movies. ¹	[implicative]
	e.	Nur got the children dancing.	[progressive/resultative]
	f.	Nur got the door closed.	[participial/resultative]
	g.	Nur got the children to open the door.	[causative]

Today: focus on a unified causal analysis of (3f)-(3g)

¹DiPillo (2023) calls this 'opportunity'-get; it shares the implicative inferential profile

Past work on participial get (McIntyre 2005)

Observations: participial get licenses responsibility and hindrance inferences

- (4) Nur got the door closed.
 - a. Responsibility: Nur was responsible for the door being closed.
 - b. *Hindrance:* Nur faced difficulty/resistance in closing the door.

McIntyre's proposal: hindrance-get is the inchoative of (non-directive) have

(4) ~ $BECOME(Nur had_{resp} the door closed)$

• presupposes subject action (trying?), only describes transition into HAVE state

(5) Nur didn't get the door closed \rightsquigarrow Nur couldn't get the door closed

- not causative (doesn't predicate CAUSE/causing event), responsibility inherited from HAVE
- hindrance follows from "failure to credit the attainment of the result to the subject's actions" (i.e., implicature from competition with actual causatives)

Inference patterns of causative get

Surprisingly little on get with infinitival complements:

- (6) Nur **got** the door to close / **got** the children to close the door.
- responsibility remains, but not directness (cf. Nur closed the door)
- hindrance inferences disappear or become manipulation

Hypothesis: infinitival get is an indirect causative (adds a second causer)²

X get Y to $Z \sim X$ influenced Y to bring about Z(Y)

- marked with non-causal complements
 - (7) ??Nur got the door to be red. / ??Nur got the children to be old.

Observation: hindrance and indirectness also alternate with participial get

- (8) a. Nur got the door closed (herself).
 - b. Nur got the door closed (by Ola).

²Cf. Hindi 'second'/-*vaa* causatives; Bhatt 2003, a.o.

P. Nadathur

+direct. +hindrance

-direct, -hindrance

Comparing causative and participial get: the patterns

- Both constructions imply subject responsibility (but not intent)
 - (9) Nur (inadvertently) got the door closed / got the door to close, #but she wasn't responsible for the door closing.
- Causative get is always indirect (no hindrance, at best manipulation)
- Participial get can be direct or indirect: hindrance varies with directness
- Negation (in both cases) licenses inability instead of inaction:

(10) Nur didn't get the door to close. \sim Nur couldn't close the door / didn't manage to close the door

Hypothesis: shared patterns suggest a shared (causal) core

More precisely:

- responsibility diagnoses a shared semantic relation of causal sufficiency
- inability indicates that the subject-involved event is presupposed

P. Nadathur

Introduction

2 Get-constructions: some background

3 Get as an indirect sufficiency causative

- **④** Explaining the relation between hindrance and (in)directness
- **5** Conclusions and outlook

first hypothesis

Sufficiency causatives (Nadathur & Lauer 2020)

Recall: make = CAUSE + coercive implication

(2) X make Y do
$$Z := X$$
 cause Y to Z
+ Y did not want to do Z

- **but:** make is fine when the causee plausibly wants the outcome, and even with non-volitional causees
 - (11) a. "A surprise surgery [...] brought Albert in contact with nurses who made her feel happy and important [...]"
 - b. "Too much water made the plant die"

Solution: the sufficiency thesis (Lauer & Nadathur 2018, Nadathur & Lauer 2020)

make expresses that the cause guaranteed its effect (i.e., made it inevitable)

• Coercive implication: if Nur's action guaranteed that the children danced, they could not have acted freely

 $(P \xrightarrow{\text{c-influences}} Q)$

Causal dynamics and causal dependency relations

Causal dependencies are cashed out in a causal network model (Pearl 2000)

- causal information is represented in a directed acyclic graph D
- nodes: finite set *P* of salient *propositional variables* (can take values *u*, 0, 1)
- edges: atomic relations of causal relevance
- structural equations: specify how nodes' values are determined by their ancestors'

Function F_D assigns to each $X \in P$ a pair $\langle Z_X, f_X \rangle$ where Z_X is the set of X's immediate ancestors, and $f_X : \{0, 1\}^{|Z_X|} \to \{0, 1\}$

• causal consequences: of a situation *s* (3-way valuation of *P*) are calculated using *D* and *F_D*

In lexical semantics:

Causal language refers to (predicates, presupposes) particular structural configurations as different causal dependency types

(cf. Nadathur & Lauer 2020, Baglini & Bar-Asher Siegal 2021)

Illustration: the Lifschitz circuit

(12) **The circuit example:** one light, two switches

- a. The light comes on (L) exactly when both switches are in the same position (up or not up).
- b. At the moment switch 1 is down, and switch 2 is up.

- (a) states the causal laws (dynamics)
- (b) gives us an initial setting (background situation)
- given (b), a **normal causal development** will be a situation in which the light is off (L = 0)

Causal dependence relations (structurally defined)

Given two events C and E, and a background situation s which does not fix the occurrence of C ...

- (13) C is causally sufficient for E relative to s if
 a. s does not produce E as a normal causal development the effect wasn't already inevitable
 b. s' = s + C does produce E as a normal causal development the cause guarantees the effect
- (14) C is causally necessary for E relative to s if
 - a. s does not guarantee E
 - b. s' = s + C has a supersituation s'' which does not fix E, but has it as a normal causal development

the cause makes the effect possible

c. there is no supersituation s'' of s' which makes (b) true but does not have C as a normal causal development

the effect was not possible without the cause

Illustration: the Lifschitz circuit

Suppose switch 1 is fixed up $(S_1 = 1)$. In this background situation, flipping switch 2 up is both necessary and sufficient for the light to come on.

Nadathur & Lauer 2020:

- if make predicates sufficiency and cause predicates necessity (and possibly something more; Baglini & Bar-Asher Siegal 2021), we correctly predict that ...
- (15) a. Turning the second switch on made the light go on.
 - b. Turning the second switch on **caused** the light to go on.

... are both acceptable

Comparing causative *make* and *get*

Make is a direct sufficiency causative, need not select for causative complements:

- (16) a. Nur made the door (?be) red / the children (?be) old
 - b. ??Nur got the door (to be) red / the children (to be) old

Interpersonal make, get (Wierzbicka 1998) differ with respect to causee volition:

- (17) a. Nur made the children dance. No choice; volition irrelevantb. Nur got the children to dance. She influenced them; volition matters
 - similar contrast with inanimate causees
 - (18) a. Nur made the door open. Forcibly; non-canonical opening
 b. Nur got the door to open. Manipulation of internal mechanism

Claim: *Get* is an **indirect** sufficiency causative. A *get*-cause suffices for the **proximate** (final necessary/sufficient) cause of its causative complement

Catalytic causation: indirect sufficiency

- (19) **Proposal.** Let X stand for an event C_1 or its most prominent participant.
 - a. $[X \text{ get } Y \text{ to } VP]^D$ is defined w.r.t. situation $s \subseteq w^*$ and model D iff $s(C_1) = 1$ and there is some event C_2 which is **causally necessary** and sufficient for E = [VP] ([Y]) relative to s, D. presupposes the truth of C_1 and selects for a caused/causative complement
 - b. If defined, $[X \text{ get } Y \text{ to } VP]^D = 1$ in *s* iff C_1 is **causally sufficient** for C_2 relative to $s C_1, D$. *asserts* **causal sufficiency**, guaranteeing C_2 and thus E
 - captures responsibility, via chained sufficiency (selects causal complement)
 - captures McIntyre's observations about presupposed action

(10) Nur didn't get the door to close. \sim Nur couldn't close the door / didn't manage to close the door

• NB: acceptability of unergative complements suggests an explicitly causal lexical representation (Levin & Rappaport Hovav 1994, Copley & Harley 2015)

(1d) Nur got the children { to dance / dancing }.

Introduction

- **2** Get-constructions: some background
- 3 Get as an indirect sufficiency causative
- **4** Explaining the relation between hindrance and (in)directness
- **5** Conclusions and outlook

Extending the analysis to participial get

Assume: participial get selects for resultative complements (cf. Fleisher 2006)

- (20) Y be closed ~ $\exists e, s[PROX-CAUSE(e)(s) \& CLOSED(Y)(s)]$ PROX-CAUSE(e)(s) $\equiv e$ is causally necessary and sufficient for s in context
 - Indirectness with non-finite complements is derived via specification of an intervening (non-subject) causer, on which the *get*-subject acts (Wolff 2003)
 - **Resultative complements** are underspecified, permitting readings on which the (inferred) agent of the proximate cause is identified with the *get*-subject
 - (8a) Nur got the door closed (herself)
 - a. *Presupposes:* Nur is the agent of an actual event C_1 , there is an event C_2 which is necessary/sufficient for the door to close
 - b. Asserted: C_1 is causally sufficient for C_2
 - c. *Pragmatically:* Nur is the agent of C_2
 - This derives **directness**, but why the **hindrance** inference? (Short answer: *C*₂'s *necessity*)

Hindrance get and implicative manage

McIntyre (2005) compares the 'hindrance' inference of *get* to the **non-triviality presupposition** of implicative *manage*:

- (21) a. Nur managed to close the door.
 - b. Nur got the door closed.

→ Nur intended / tried to close the door
 → Closing the door was difficult? effortful? unlikely? (for Nur)

- **Challenge:** *manage*'s projective content can't be tied to effort, intention, trying, difficulty, ... because *manage* is acceptable where these inferences are denied (Coleman 1975, Baglini & Francez 2016)
 - (21a) Nur managed to close the door ... inadvertently, ... easily, ... without even trying, ... as we expected
- the facts with *get* are similar (Baglini 2012)
 - (21b) Nur got the door closed.

... inadvertently, ... easily, ... without even trying, ... as we expected

Hindrance get and implicative manage

Solution: an effect is non-trivial if it has a causal prerequisite

- (22) Causal semantics: x manage to P (Nadathur 2023, cf. Baglini & Francez)
 - a. *presupposes:* the existence of an action A such that A(x) is **causally necessary** and **sufficient** for P(x)
 - b. asserts: A(x)

Compare to 'direct' resultative get

- (8a) Nur got the door closed (herself)
 - a. Presupposes: Nur is the agent of actual C_1 , some C_2 is necessary/ sufficient for the door to close
 - b. Asserted: C_1 is causally sufficient for C_2
 - c. *Pragmatically:* Nur is the agent of C_2
 - Given (c): $C_2 \sim A(x)$ in (22) (Nur must act to realize the *get*-result)
 - No subject hindrance w/out (c): C_2 is necessary, but *get*-subject not involved

Introduction

- **2** Get-constructions: some background
- 3 Get as an indirect sufficiency causative
- ④ Explaining the relation between hindrance and (in)directness
- **5** Conclusions and outlook

Conclusions and outlook

Indirect causal sufficiency offers a unified approach to participial (resultative) and causative *get* (and predicts selection for causative complements)

- **sufficiency** explains responsibility inferences; **intervening cause(r)** explains the hindrance/indirectness alternation
- should extend to *get* with progressive complements (*Nur got the children dancing*) if these can be treated as **caused progressive states**
- experiencer get may also be explicable (*Nur got her car stolen*; resultative, -direct, -intention)

Looking farther afield:

- Get-passives suggest more subject responsibility than standard passives (Nur got / was fired); captured by indirect sufficiency + passive complement?
- **Implicative** (opportunity) *get*: implicative inferential profile pattern, but 'causing' action assigned to a non-specified agent (indirect but guaranteeing relation to the proximate complement cause)
 - (3d) Nur **got** to go to the movies.

Selected references

- Baglini 2012. The semantics of uncertainty. Handout from Workshop on Semantics & Philosophy of Language, UChicago.
- 2 Baglini & Francez 2016. The implications of *managing*. JoSem 33.
- 3 DiPillo 2023. Introducing opportunity get. CLS 59.
- 4 Fleischer 2006. The origin of passive get. English Language & Linguistics 10.
- **5** Karttunen 1971. Implicative verbs. Language 47.
- 6 Levin & Rappaport Hovav. 1994. A preliminary analysis of causative verbs in English. *Lingua* 92.
- **7** McIntyre 2005. The semantic and syntactic decomposition of get. JoSem 22.
- 8 McIntyre 2012. The BECOME=CAUSE hypothesis and the polysemy of get. Linguistics 50.
- **(9)** Nadathur 2023. Causal semantics for implicative verbs. *JoSem* to appear.
- 1 Nadathur & Lauer 2020. Causal necessity, causal sufficiency, and the implications of causative verbs. Glossa 5.
- Pearl 2000. Causality.
- Wierzbicka 1998. The semantics of English causative constructions in a universal-typological perspective. The New Psychology of Language.
- Wolff 2003. Direct causation in the linguistic encoding and individuation of causal events. Cognition 88.